Advances in Steel Structures (ICASS 2020)

Edited by

Siu-Lai Chan
Department of Civil and Environment Engineering, The Hong Kong Polytechnic University

Zhi-Xiang Yu
School of Civil Engineering, Southwest Jiaotong University

Published by
Hong Kong Institute of Steel Construction Limited
Table of Contents

Preface XI

Volume I

Keynote Lectures

SEISMIC DESIGN AND ANALYSIS OF STEEL PANEL DAMPERS FOR STEEL FRAME BUILDINGS 2
K.C. Tsai* and C.H. Hsu

THE CONTINUOUS STRENGTH METHOD - REVIEW AND OUTLOOK 15
L. Gardner*, X. Yun and F. Walport

Assembled Structure

A NEW TYPE OF ASSEMBLED THERMAL INSULATION DECORATIVE WALL SYSTEM FIRE RESISTANCE STUDY 28
C.L. Wang*, S.R. Jiang, B.C. Li and S. Li

RESEARCH ON SEISMIC BEHAVIOR OF ASSEMBLED BEAM-COLUMN JOINTS WITH C-SHAPED CANTILEVER SECTION 38

EXPERIMENTAL STUDY AND NUMERICAL ANALYSIS ON SEISMIC BEHAVIOR OF ASSEMBLED BEAM-COLUMN JOINTS WITH C-SHAPED CANTILEVER SECTION 59

RESEARCH ON DYNAMIC LOAD CARRYING CAPACITY OF ASSEMBLED INTERNAL STIFFENING WIND TURBINE TOWER BASED ON MULTI-SCALE MODELING 82
F.W. Wang*, K.M. Zhou and S.T. Ke

Bridge

SOUND RADIATION OF ORTHOTROPIC STEEL DECKS SUBJECTED TO MOVING VEHICLE LOADS 93
Y.C. You and X. Zhang*

POWER FLOW ANALYSIS OF BRIDGE U-RIB STIFFENED PLATES BASED ON THE CONCEPT OF STRUCTURAL INTENSITY 102
D.R. Kong and X. Zhang*
VIBRO-ACOUSTICAL PERFORMANCE OF A STEEL BEAM OF GROOVE PROFILE: FIELD TEST AND NUMERICAL ANALYSIS 112
Z.Q. Liu and X. Zhang*

PERFORMANCE OPTIMIZATION OF A STEEL-UHPC COMPOSITE ORTHOTROPIC BRIDGE WITH INTELLIGENT ALGORITHM 122
Z. Xiang*, Z.W. Zhu, J.Y. Cai and J.P. Li

LOAD-CARRYING CAPACITY OF DAMAGED STEEL GIRDER 140
E. Yamaguchi*, T. Amamoto, D. Nakashima and K. Shiraishi

Cold-Formed

EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES OF STRAW BALE 148
H.S. Sun, B.Z. Cao*, Z.H. Chen

A SURROGATE MODEL TO ESTIMATE THE AXIAL COMPRESSIVE CAPACITY OF COLD-FORMED STEEL OPEN BUILT-UP SECTIONS 161
S.R. Kho*, A.L.Y. Ng, D.T.W. Looi

LOCAL BUCKLING BEHAVIOR OF COLD-FORMED CIRCULAR HOLLOW SECTIONS HIGH STRENGTH STEEL STUB COLUMNS BASED ON A HIGH-FIDELITY NUMERICAL MODEL 171
C. Yang, L. Ying* and Y.N. Zhao

BEHAVIOR OF WEB PERFORATED COLD-FORMED STEEL BEAMS UNDER COMBINED BENDING AND SHEAR ACTION 184
L.P. Wang*, J. Li, X.X. Cao and H.B. Wang

OVERHANG EFFECT ON WEB CRIPPLING CAPACITY OF COLD-FORMED AUSTENITIC STAINLESS STEEL SHS MEMBERS: AN EXPERIMENTAL STUDY 212
K.J. Zhan, C. Chen, Y. Cai and H.T. Li*

Composite

CALCULATION METHOD OF ULTIMATE LOAD BEARING CAPACITY OF CONCRETE FILLED STEEL TUBULAR LATTICE COLUMNS 223
J.J. Qi*, X. Hu, W.B. Zhou, W.H. Shi and Z. Huang

AXIAL COMPRESSION BEHAVIOR OF SQUARE THIN-WALLED CFST COLUMN TO RC BEAM JOINTS 236
D. GAN*, Z.X. Zhao, X.H. Zhou and Z. Zhou*
NUMERICAL SIMULATION ANALYSIS OF TEMPERATURE FIELD OF BOX-TYPE COMPOSITE WALL
Q.Q. He, R. Li, C. Xue, T. Lan and G.C. Qin

THERMO-MECHANICAL COUPLING RESPONSE ANALYSIS OF THE BOX-PLATE PREFABRICATED STEEL STRUCTURE UNDER FIRE
C. Xue, R. Li, G.C. Qin and T. Lan*

STUDY ON FIRE RESISTANCE OF BOX-TYPE COMPOSITE WALLS
Y.Q. Fu, Q.Q. He, G.C. Qin, T. Lan* and R. Li

NUMERICAL SIMULATION AND RESEARCH ON WELDING RESIDUAL STRESS OF BOX-TYPE STEEL STRUCTURE
R. X. Gao, Men J. J., Lan T* and Li. R

STUDY ON SHEAR BEHAVIOR OF BOX-TYPE STEEL STRUCTURE CONSIDERING WELDING EFFECT
S. Wang, C. Xue, T. Lan* and J.J. Men

STUDY ON LOCAL BEARING CAPACITY OF COMPOSITE I-GIRDER WITH CONCRETE-FILLED TUBULAR FLANGE AND CORRUGATED WEB
C.J. Wu, L.X. Deng* and Y.B. Shao

PERFORMANCE OF STUD SHEAR CONNECTIONS IN COMPOSITE SLABS WITH VARIOUS CONFIGURATIONS
M.H. Shen, K.F. Chung* and X.D. Wang

STUDY OF INITIAL IMPERFECTION OF CONCRETE-FILLED CIRCULAR STEEL TUBE COLUMNS FOR DIRECT ANALYSIS
Z.J. Zhang, J.L. Xing, Y.P. Liu* and G.C. Li

Connections
SEISMIC PERFORMANCE OF THREE-DIMENSIONAL STEEL BEAM-COLUMN CONNECTIONS
Y.L. Xu*, Y.F. Shang and Y.X. Su

EXPERIMENTAL STUDY ON TRUSS TYPE STEEL REINFORCED CONCRETE JOINTS
T. Chen*, X.L. Gu, W.R. Fu, Q.H. Huang and B. Peng

EXPERIMENTAL INVESTIGATION ON THE STRUCTURAL BEHAVIOR OF CORRODED SELF-DRILLING SCREW CONNECTIONS IN COLD-FORMED STEEL STRUCTURES

111
ULTIMATE STRENGTH, DUCTILITY AND FAILURE MODE OF HIGH-STRENGTH FRICTIONAL BOLTED JOINTS MADE OF HIGH STRENGTH STEEL
Z.C. Qin*, H. Moriyama, T. Yamaguchi, M. Shigeishi, Y. Xing and A. Hashimoto

EXPERIMENTAL STUDY ON BOLTED CONNECTIONS IN COLD-ROLLED ALUMINIUM PORTAL FRAMES
H.C. Nguyen and C.H. Pham*

EXPERIMENTAL STUDY ON BEHAVIOR OF THE GUSSET-PLATE JOINT OF ALUMINUM ALLOY PORTAL FRAME
J. Liu*, X.N. Guo and Y.F. Luo

PARAMETRIC STUDIES ON SCF DISTRIBUTION OF THREE-PLANAR TUBULAR Y-JOINTS UNDER IN-PLANE BENDING MOMENT
S.L. Bao*, Y.T. Tai, Y. Tian, X.Y. Zhao and R.N. Li

PARAMETRIC STUDIES ON THE MOMENT RESISTANT BEAM-COLUMN CONNECTION BEHAVIOR OF CONCRETE FILLED DOUBLE STEEL TUBULAR COLUMNS AND I STEEL BEAMS
M. Sulthana*, T. Supritha

LOAD TRANSFER MECHANISM OF STEEL GIRDER-RC PIER CONNECTION IN COMPOSITE RIGID-FRAME BRIDGE
H.X. Liu*, Xianlin Wang, Maofeng Yu, Binqiang Guo and Yuqing Li

COMPARISON OF MECHANICAL BEHAVIOR BETWEEN LONGITUDINAL LAP-WELDED JOINTS AND TRANSVERSE FILLET WELDED JOINTS OF HIGH STRENGTH STEEL
S.H. Jiang, M.M. Ran*, F. Xiong and Y.C. Zhong

STUDY ON THE STATIC BEHAVIOR OF COLD-FORMED STEEL FABRICATED BEAM-COLUMN JOINT
L.P. Wang*, A. Abubakar B* and J. Li

NUMERICAL STUDY OF THE PRELOAD FORCE LOSS OF CORRODED HIGH-STRENGTH BOLTS
Y. Jin, X. Zhang and Z.Y. Kong*

Corrosion, Fracture & Collapse

ANTI-WIND CAPACITY CHECK AND COLLAPSES ANALYSIS OF EXISTING TRANSMISSION TOWER
W.T. Zhang*, Y.Q. Xiao, C. Li and Q.X. Zheng
DYNAMIC ANALYSIS OF LONG-SPAN TRANSMISSION TOWER-LINE SYSTEM UNDER DOWNBURST
D.K. Zhang*, H.Z. Deng and X.Y. Hu

APPLICATION RESEARCH OF V CONTAINING HIGH STRENGTH WEATHERING STEEL IN STEEL STRUCTURE BUILDING
Z.R. Li*, K.Y. Cui, C.W. Wang and S. Chen

EFFECT OF VARIOUS BOUNDARY CONSTRAINTS ON THE COLLAPSE BEHAVIOR OF MULTI-STORY COMPOSITE FRAMES
Z. Tan, W.H. Zhang*, X.Y. Song, B. Meng, C.F. Li, and S.C. Duan

Design & Analysis

STRENGTHENING DESIGN AND MECHANICAL BEHAVIOR ANALYSIS OF THE MAIN STRUCTURE FOR AN INDUSTRIAL WORKSHOP WHEN EQUIPMENT CHANGED
B. Jiang*, L. Jiang, S.C. Sang, Y.Y. Li, Y.G. Wu

ENHANCEMENT OF ANTI-COLLAPSE CAPACITY OF STEEL FRAME WITH OPENINGS IN BEAM WEB
B. Meng*, W.H. Zhong and J.P. Hao

INNOVATION AND PRACTICE IN BUILDING STRUCTURE DESIGN
Y.Q. Zhang*, J.M. Ding and Z. Zhang

CORRELATION BETWEEN RANDOM LOCAL MECHANICAL PROPERTIES OF STRUCTURAL STEEL
A. Machowski, M. Maslak* and M. Pazdanowski

RESEARCH ON CALCULATION METHOD OF LOADED COMPRESSION MEMBER OF SINGLE-LIMB FIRE-CURVED EQUILATERAL DOUBLE SPLICING T-SHAPED ANGLE STEEL
X.D. Li*, Z.G. Fang, J.Q. Ye, D.H. Sun and W. Yao

ROTATIONAL STIFFNESS MODEL FOR SHALLOW EMBEDDED STEEL COLUMN BASES
X.X. Xu*, X.Z. Zhao and S. Yan

STUDY ON MECHANICAL PROPERTIES OF SIMPLIFIED STEEL FRAME MODEL WITH EXTERNAL WALL PANELS
Y.Z. Liu* and W.Y. Zhang

INTEGRATED DESIGN OPTIMIZATION FOR LONG SPAN STEEL TRANSFER TRUSS
AT REDEVELOPMENT OF HONG KONG KWONG WAH HOSPITAL
X.K. Zou, Y. Zhang, Y.P. Liu*, L.C. Shi and D. Kan

Direct Analysis

SECOND-ORDER DIRECT ANALYSIS FOR STEEL H-PILES ACCOUNTING FOR POST-DRIVING RESIDUAL STRESSES
W.H. Ouyang, L. Chen and S.W. Liu*

Fatigue

RECONSTRUCTION METHOD OF FATIGUE DAMAGE STATE OF IN-SERVICE STEEL BRIDGE WITHOUT LOAD INFORMATION
L.T. Da*, Q.H. Zhang, M.Z. Li and C. Cui

FATIGUE PERFORMANCE OF RIB-TO-DECK JOINTS STRENGTHENED WITH INTERNAL WELDING
M.Z. Li*, Q.H. Zhang, J. Li, L.T. Da and C. Cui

EXPERIMENTAL INVESTIGATION ON RESIDUAL STRESS DISTRIBUTION AND RELAXATION EFFECT AT DOUBLE-SIDE WELDED RIB-TO-DECK JOINTS OF ORTHOTROPIC STEEL DECKS
Y. Ma*, C. Cui, Q.H. Zhang and W.L. Lao

FATIGUE BEHAVIOUR OF TITANIUM-CLAD BIMETALLIC STEEL PLATE WITH DIFFERENT INTERFACIAL CONDITIONS

MECHANICAL PROPERTIES AND SIMULATION METHOD OF STRUCTURAL STEEL AFTER HIGH CYCLE FATIGUE DAMAGE
Q. Si, Y. Ding, L. Zong* and H. Liu

EXPERIMENTAL STUDY ON WELDING RESIDUAL STRESS OF TWO-WAY STIFFENED STEEL PLATES
Z. Shao, Y.X. Li, S.Y. Song, W.L. Jin, Y.Q. Liu*

Volume II

Fire
BENDING MECHANICAL PROPERTIES OF STEEL – WELDED HOLLOW SPHERICAL JOINTS AT HIGH TEMPERATURES
L. Wang, H.B. Liu*, H. Dong, and X.N. Liu

HIGH STRENGTH STEEL BEAM BEHAVIOR UNDER FIRE EXPOSURE CONSIDERING CREEP
H. Al-azzani*, W.Y. Wang and A. Sharhan

EXPERIMENTAL INVESTIGATION ON MECHANICAL PROPERTIES OF GRADE 1670 STEEL WIRES AT AND AFTER ELEVATED TEMPERATURE

FINITE ELEMENT SIMULATION FOR ULTRA-HIGH-PERFORMANCE CONCRETE-FILLED DOUBLE-SKIN TUBES EXPOSED TO FIRE
A.H.A. Abdelrahman*, M. Ghannam, S. Lotfy, and M. AlHamaydeh

High-Strength Steel

EXPERIMENTAL INVESTIGATION OF RESIDUAL STRESS IN WELDED T-SECTION BY DOMESTIC Q460 HIGH STRENGTH S
X.L. Xiong*, F.R. Nkuichou, T. Wang, M. Ma and K. Du

CORROSION EFFECTS ON MECHANICAL PROPERTIES OF Q620 HIGH-STRENGTH STEEL
N. Wang, J.M. Hua, X.Y. Xue*, Q.Q. Huang, F. Wang

Impact and protection

TENSILE BEHAVIOR OF T-STUB SUBJECTED TO STATIC AND DYNAMIC LOADS
H. Huang, L.M. Ren, K. Chen, X.J. Li, L. Wang and B. Yang*

Intelligent Construction

APPLICATION OF HYDRAULIC SYNCHRONOUS LIFTING TECHNOLOGY IN CONSTRUCTION OF LONG-SPAN HYBRID STEEL STRUCTURES
M.L. Zhang*, W. Liu, Z. Lei, D.G. Wang, J.Y. Wang, L.Y. Zhou* and X.P. Shu

TESTING OF ADDITIVELY MANUFACTURED STAINLESS STEEL MATERIAL AND CROSS-SECTIONS
R.Z. Zhang*, L. Gardner and C. Buchanan

EMBODIED CARBON CALCULATION AND ASSESSMENT FOR STEEL STRUCTURE PROJECT
D. Chan, W. Sun and Y.Y. Wang*
COMPLETE SET CONSTRUCTION TECHNOLOGY OF LARGE OPENING CABLE DOME STRUCTURE BASED ON INTEGRATED
Y.Y. Shang*, Z.S Xing, C.Q. Wu, F.S. Lu and B. Luo

COMPLETE SET ROTATION-LIFTING CONSTRUCTION TECHNOLOGY FOR FREE-FORM SURFACE ROOF STRUCTURES WITH LARGE ELEVATION DIFFERENCE
Z.S. Xing, S.R. Jia, Z.H. Zhang and D.C. Ye

New Materials

FINITE ELEMENT ANALYSIS ON BEHAVIOR OF HCFHST MIDDLE LONG COLUMNS WITH INNER I-SHAPED CFRP UNDER AXIAL LOAD
G.C. Li, R.Z. Li* and Z.J. Yang

STUDY ON THE MECHANICAL BEHAVIOR OF GFRP PLATE-CONE CYLINDRICAL RETICULATED SHELL
X. Wang, L. Chen, Y.H. Huang, F. Wang* and X. Zhang

EXPERIMENTAL STUDY ON MECHANICAL PROPERTIES AND OPTIMIZATION OF CHOPPED BASALT FIBER REINFORCED CONCRETE
Q. Liu, Z.X. Yu and R. Guo*

STUDY ON MECHANICAL PROPERTIES OF STAINLESS STEEL PLATE SHEAR WALL STRENGTHENED BY CORRUGATED FRP
Y.P. Du* and L. Zhong

DESIGN OF THE DEPLOYABLE-FOLDABLE ACTUATOR AND VIBRATION CONTROL DEVICE BASED ON THE SHAPE MEMORY ALLOYS WITH A TWO-WAY EFFECT
D. Song*, Y.J. Lu, and C.Q. Miao

Seismic Resistance

FEASIBILITY STUDY OF VISCOELASTIC HYBRID SELF-CENTERING BRACE (VSCB) FOR SEISMIC-RESISTANT STEEL FRAMES
Y.W. Ping, C. Fang* and Y.Y. Chen

TEST ON RESILIENCE CAPACITY OF SELF-CENTERING BUCKLING RESTRAINED BRACE WITH DISC SPRINGS

MECHANICAL PROPERTIES OF KINKED STEEL PLATES AND THEIR APPLICATIONS IN FRAME STRUCTURES
X.J. Yang, F. Lin* and C.P. Liu
SEISMIC COLLAPSE AND DEBRIS DISTRIBUTION OF STEEL FRAME STRUCTURES WITH INFILL WALLS
Z. Xu and F. Lin*

ANALYSIS OF TRANSIENT STRUCTURAL RESPONSES OF STEEL FRAMES WITH NON-SYMMETRIC SECTIONS UNDER EARTHQUAKE MOTION
W.L. Gao, L. Chen and S.W. Liu*

SEISMIC RESILIENCE ASSESSMENT OF A SINGLE-LAYER RETICULATED DOME DURING CONSTRUCTION
T.L. Zhang and J.Y. Zhao*

Stability

LOCAL BUCKLING (WRINKLING) OF PROFILED METAL-FACED INSULATING SANDWICH PANELS - A PARAMETRIC STUDY
M.N. Tahir* and E. Hamed

COMPARATIVE STUDY ON STABILITY OF WELDED AND HOT-ROLLED Q420 L300×30 COLUMNS
A.P. Chou and G. Shi*

ELASTIC BUCKLING OF OUTSTAND STAINLESS-CLAD BIMETALLIC STEEL PLATES SUBJECTED TO UNIAXIAL COMPRESSION
Y.X. Mei* and H.Y. Ban

IMPERFECTION SENSITIVITY OF NON-TRIANGULATED CYLINDRICAL SHELL CONFIGURATIONS
R. Kolakkattol*, K.D. Tsavdaridis, and A.S. Jayachandran

Stainless Steel

MATERIAL PROPERTIES AND LOCAL STABILITY OF WAAM STAINLESS STEEL PLATES WITH DIFFERENT DEPOSITION RATES
S.I. Evans* and J. Wang

A REEXAMINATION ON CALIBRATION OF CYCLIC CONSTITUTIVE MODEL FOR STRUCTURAL STEELS

FINITE ELEMENT MODELING OF CONCRETE-FILLED STAINLESS-CLAD BIMETALLIC STEEL SQUARE TUBES UNDER AXIAL COMPRESSION
Z.J. Chen*, H.Y. Ban, Y.Q. Wang
Structure Systems

INVESTIGATION OF CYCLIC BEHAVIOR OF FULL-SCALE TREE-LIKE HOLLOW STRUCTURAL SECTION COLUMNS WITH INFILLED CONCRETE
D. Gan*, Z.H. He, and H.H. Huang

ANALYSIS OF THE SEISMIC BEHAVIOR OF INNOVATIVE ALUMINIUM ALLOY ENERGY DISSIPATION BRACES
B. Jia*, Q.L. Zhang and T. Wu

SHAKING TABLE TEST OF NEW LIGHT STEEL STRUCTURE SYSTEM

Testing & Monitoring

THE CRACK DETECTION METHOD OF LONGITUDINAL RIB BUTT WELD OF STEEL BRIDGE BASED ON ULTRASONIC LAMB WAVE
D.K. Zhang*, Q.H. Zhang, C. Cui and S.J. Qiu

ON FIELD-MEASURED VERTICAL TEMPERATURE GRADIENT OF BOX GIRDER IN STEEL BRIDGES
Z.W. Zhu*, T. Qin, X.W. Chen
Preface

These proceedings contain the papers presented at the TENTH INTERNATIONAL CONFERENCE ON ADVANCES IN STEEL STRUCTURES (ICASS 2020) held in Chengdu, China, from 21 to 23 August 2022. The international conference series on Advances in Steel Structures was initiated in 1996 under the support of The Hong Kong Polytechnic University, which remains very active in fostering its continuation—joined a few years later by the Hong Kong Institute of Steel Construction.

These proceedings bring together most recent findings in numerical, theoretical and experimental research, as well as its practical implementation in design practice in the areas of Assembled Structure, Bridge, Cold-formed Steel, Composite, Connections, Corrosion, Fracture & Collapse, Design & Analysis, Direct Analysis, Fatigue, Fire, High-Strength Steel, Impact and Protection, Intelligent Construction, New Material, Seismic Resistance, Stability, Stainless Steel, Structure Systems, Testing & Monitoring. The papers presented in these proceedings come from a wide range of countries/regions and will be a great reference source.

Specially, the subject matter has been categorized under the broad heading of:

Volume I: Keynotes Lectures, Assembled Structure, Bridge, Cold-Formed, Composite, Connections, Corrosion, Fracture & Collapse, Design & Analysis, Direct Analysis, Fatigue

Each of the papers was subjected to stringent review by a panel of experts in the respective area. This peer review began with an assessment of the submitted abstracts and following this, authors were invited to submit their full manuscripts. Each manuscript was then carefully reviewed by relevant experts, and their recommendations on accepting, rejecting or modifying the submissions were strictly adhered to, before inclusion in the conference proceedings.
Fatigue
FATIGUE PERFORMANCE OF RIB-TO-DECK JOINTS STRENGTHENED WITH INTERNAL WELDING

M.Z. Li*, Q.H. Zhang, J. Li, L.T. Da, and C. Cui

Department of Bridge Engineering, Southwest Jiaotong University, Section 111 of Northbound 1, Second Ring Road, Chengdu, Sichuan, China
E-mails: mingzheli@my.swjtu.edu.cn, swjtuqzh@swjtu.edu.cn, swjtulijun@126.com, letianda@163.com, cui@swjtu.edu.cn

Abstract: Rib-to-deck joints of orthotropic steel decks (OSDs) in steel bridges are susceptible to longitudinal fatigue cracking, which often results in considerable costs as well as traffic interruption. This paper numerically simulated the Crack II of rib-to-deck joint and analyzed the crack failure mode of the joint. To mitigate such cracking, a strengthening method using internal welding was investigated. The effects of initial crack size, internal weld size and crack depth on the stress intensity factor (SIF) of crack tip on rib-to-deck fatigue details were studied by finite element method. The finite element analysis demonstrated that the proposed method can significantly improve the detailed stress range of the weld root, lead to the transfer of crack development mode, and prolong the fatigue life of rib-to-deck joints. Numerical analysis validated the beneficial effect of strengthening measures on the stress intensity factors at crack tips. Calculation of stress intensity factors at crack tips resulted that the crack development law, and the application range of reinforcement method was analyzed. This study provided a reference to the design and application of internal welding in the strengthening of weld details in OSDs.

Keywords: Rib-to-deck joints; Crack II; Internal welding; Crack size; Finite element model

DOI: 10.18057/ICASS2020.P.268

1 INTRODUCTION

Orthotropic steel deck (OSD) features light weight and high strength, and is an important landmark innovation achievement of modern bridge engineering and the preferred bridge deck structure for long-span bridges [1-4]. Existing studies show that [5-7]: (1) the fatigue cracking cases of longitudinal rib-to-deck joints and longitudinal rib-to-diaphragm joints account for 30.2% and 61.0% of the total fatigue cracking cases of steel bridge deck respectively, and the total proportion of the two is as high as 91.2%. The two types of welded joints are the key structural details that determine the fatigue performance of steel bridge deck. Figure 1 shows the fatigue cracking mode of welded joints between deck plate and longitudinal rib as well as cross details of longitudinal rib and diaphragm.

The key factors affecting the fatigue life of steel deck structure mainly include internal and external factors. The former mainly includes random characteristics such as structural system, structural detail design, weld geometric parameters and manufacturing defects, and the latter mainly refers to service environment and random traffic load conditions [6-9]. In recent years, fatigue cracking cases of steel bridge deck have occurred frequently, showing the characteristics of ‘universality, early occurrence, multiple occurrence and reproducibility’. Scholars have made fruitful research on the fatigue crack reinforcement methods of steel
bridge deck, and put forward a variety of fatigue crack reinforcement methods, including crack arrest hole method, welding repair method, local reinforcement method, combined system method and fabricated reinforcement method [10-16], as shown in Figure 2. The research content mainly focuses on the effect of reinforcement methods on the stress amplitude, stress amplitude and the reduction of stress intensity factor at fatigue crack tip and the inhibition effect of fatigue crack propagation are carried out.

![Figure 1: Typical fatigue cracking mode of OSD](image1)

Previous research showed that the dominant cracking modes of the rib-to-deck joints and the longitudinal rib-to-diaphragm cross joints are closely related to the structural system design parameters and structural detail design of the steel bridge deck, and the fatigue life of the dominant cracking mode determines the fatigue life of the structural details. When the penetration depth is less than the critical penetration depth, the dominant cracking mode of longitudinal rib-to-deck joint (single side weld) is crack-III; When the penetration depth is greater than the critical penetration depth, the dominant cracking mode of longitudinal rib-to-deck joint (single side weld) is crack-II.

![Figure 2: Strengthening method for fatigue cracking of OSD: (a) crack-arrest hole and welding repair; and (b) assembly reinforcement method.](image2)

Taking the dominant cracking mode of longitudinal rib and deck welding details, crack-II adopts internal weld reinforcement as an example. Through finite element analysis, this paper presents the application of internal weld for strengthening cracked OSDs. Numerical analysis validated the beneficial effect of strengthening measures on the stress intensity factors at crack tips. Calculation of stress intensity factors at crack tips resulted that the crack development law, and the application range of reinforcement method was analyzed. This study provided a reference to the design and application of internal weld in the strengthening of weld details in OSDs.
2 FAILURE MODE OF OSD

2.1 Full scale model

After 15 years of service, large amount fatigue cracks (crack-II) were found after the bridge deck pavement was removed. When considering the hidden fatigue cracks (crack-II), the fatigue cracks of each cracking mode of steel box girder account for about 54% of the fatigue cracks in the welding details of longitudinal rib and deck plate, as shown in Figure 3 (a). Among them, for the details of longitudinal rib and roof welding, the fatigue crack of crack-ii accounts for about 87%, as shown in Figure 3 (b), which is basically consistent with the predicted crack mode; At the same time, the dominant cracking mode crack-II of the structural details belongs to hidden cracks, which cannot be visually observed in the steel box girder, and the occurrence of the dominant cracking mode leads to local stress redistribution, which reduces the stress amplitude of the cracking mode crack-I and then reduces its fatigue cumulative damage. Therefore, the number of fatigue cracks of the cracking mode crack-I is small.

Zhang et al. [8,9] carried out the fatigue performance research on the welding details of longitudinal rib and deck through seven full-scale segment models. The test model includes three traditional equal thickness longitudinal ribs and four new upsetting longitudinal ribs. The full-scale segment model is composed of top plate, two longitudinal ribs and two diaphragm plates. The detailed parameters are shown in Figure 4. When the penetration rate of rib-to-deck joints were $\rho = 75\%$, the cracking mode of the model was crack II.

Hirayama et al. [17] studied the cracking mode and fatigue performance of longitudinal rib-to-deck welded joints with different penetration rates through two full-scale segment models and wheel moving loading mode. When the penetration rate of rib-to-deck joints were greater than 75%, the cracking mode of the model was crack II. Previous studies have shown that when the penetration rate at the details of rib to deck meets the requirements, the dominant cracking mode is crack II.
2.2 Sub-sized specimen model

The sub-sized specimen model is mainly used to carry out the fatigue performance research on the welded details between the longitudinal rib and the deck. There are constraints and load types of this kind of test model: (1) the transverse ends of the roof are constrained by hinge or consolidation, the longitudinal rib is in a completely free state, and the fatigue load is applied on the top surface of the roof, see Figure 5 (a); (2) the transverse ends of the top plate are restrained by hinge or consolidation, and the fatigue load is applied to the bottom plate of the longitudinal rib or to the web of the longitudinal rib through tooling, as shown in Figure 5 (b).

Figure 5. Load schematic diagram of sub-sized specimen model: (a) SM-1 [18]; and (b) SM-2 [19].

Under the loading mode SM-1, the cracking modes of crack-I and crack-III mainly occur in the welding details between the longitudinal rib and the top plate. With the improvement of penetration rate, the dominant cracking mode of the structural details moves from crack-III to crack-I [4, 20-29]. Yuan [18] carried out 185 fatigue tests by loading SM-2. The cracking mode crack-I accounted for a relatively high proportion, and the cracking modes of crack-III and crack-IV also occurred and accounted for a relatively low proportion. However, the
cracking mode of crack - II did not occur in this group of fatigue tests. Researchers Janss [30], Bruls [4] and Bigonnet [4] used similar test models to study the fatigue performance of the structural details. From the test data, the dominant cracking model is transferred from crack-III to crack-I with the increase of penetration rate of rib to deck joint.

2.3 Experimental model design

In order to study the cracking mode crack-II of rib-to-deck details, the specimen model needs to be redesigned. By adjusting the action position of fatigue load, the full-scale segment model can be used for the welding details of longitudinal rib and roof, but the model scale is large and the test cost is high; The scale of the sub-sized specimen model is moderate and the stress mode is simple, but the fatigue test results are basically the crack-I cracking mode when the penetration rate is greater than the critical penetration rate. The main reason is that the stress state of the structural details can only simulate the stress state of the actual structural cracking mode crack-I.

When the test device is used for loading, the test model of longitudinal rib and deck welding details is composed of deck and full width longitudinal rib. The deck and support column can use hinged supports to simulate hinged constraints. The bottom plate of rib is connected to angle steel through high-strength bolts to realize the constraint on the longitudinal rib, which makes the stress of the longitudinal rib between complete freedom and consolidation constraint. The purpose of basically consistent stress state of the specimen model crack-II with that of the actual structure is achieved by adjusting the angle steel thickness, support column stiffness and constraint stiffness. Figure 6 shows the schematic diagram of the test device.

![Figure 6: Schematic diagram of fatigue test device for specimen model.](image)

![Figure 7: Design of test model (unit: mm)](image)

The top plate thickness of the test model is 18mm and the longitudinal rib size is 300mm ×
300mm × 8mm, and the geometric outline dimension of the test model is 300mm × 800mm × 318mm. The penetration rate of single-sided welding is 75%, the weld leg size is \(l = h = 7 \) mm, and Q345qD steel is used for the test model, as shown in Figure 7.

3 ESTABLISHMENT OF FE MODEL

3.1 An equivalent structural stress

According to the loading mode of the test model, the equivalent structural stress method was used to study the influence of the change of transverse loading position on each cracking mode. The loading area is set to 200mm × 200mm. The transverse loading position moves from the longitudinal rib center to the support position 25 mm each time. Nine load cases were set. Variation of equivalent structural stress with load transverse position in typical cracking mode of rib-to-deck joints, as shown in Figure 8. The maximum equivalent structural stress of each cracking mode is different in the transverse loading position, but the equivalent structural stress of the cracking mode Crack-II is greater than that of the cracking mode Crack-I, that is, the cracking mode of the test model is independent of the transverse loading position.

![Figure 8: Equivalent structural stress of typical cracking modes varying with transverse loading position.](image)

3.2 Weld root crack mode

Test loading process is defined as two stages: (1) Stage I: test model before strengthened with internal weld; (2) Stage II: test model after strengthened with internal weld. According to structural stress, weld root cracking occurred in stage I of test model, that is, crack-II appeared in the test model. According to the test model size, loading conditions and boundary constraints, the finite element model (FEM) of fatigue crack with crack mode crack-II was established. The initial micro-crack is \(a_0 = c_0 = 0.1 \) mm, as shown in Figure 9. The load amplitude is 50 kN, and the load action area is 200 × 200. The action position is the position when the structural stress is the largest in Figure 8.

Figure 10 shows the crack concerns of the weld root cracking mode include point A in the crack surface direction and point C in the crack depth direction. The variation of crack length \(c \) with crack propagation depth \(a \) is shown in Figure 11. The results show that with the increase of crack propagation depth, the ratio of crack length to depth increases slowly at first and then increases rapidly at a large rate. With the continuous propagation of cracks, especially in the late stage of propagation, the crack grows faster in the length direction and slower in the depth direction.
The variation of the stress intensity factor (SIF) amplitudes of Type I (ΔK_I), Type II (ΔK_{II}), and Type III (ΔK_{III}) at the fatigue crack focus points with the crack propagation depth under the weld root cracking mode is shown in Figure 12 (a). It can be seen from the figure that the amplitude of Type I SIF is much larger than that of type II and type III SIF under the root cracking mode, and it is a composite crack dominated by Type I cracking. The amplitude variation of Type I stress intensity factor at two points A and B is slightly different with the
crack propagation. The amplitude variation of equivalent stress intensity factor at Point A directly affects the crack growth rate along the surface length direction. The larger the amplitude of stress intensity factor, the faster the crack growth. The amplitude of equivalent stress intensity factor increases rapidly in the early stage of crack propagation, and then reaches the peak gradually in the stable growth stage. When the crack propagation depth reaches about 1/2 of the plate thickness, the stress intensity factor decreases gradually, and the propagation rate along the surface length direction decreases gradually. The amplitude variation of equivalent stress intensity factor at Point C directly affects the crack propagation rate along the roof thickness direction. At the early stage of crack propagation, the amplitude of equivalent stress intensity factor increases rapidly and then enters the stable propagation stage. When the crack propagation depth reaches about 1/2 of the plate thickness, the stress intensity factor begins to decrease rapidly, indicating that the crack propagates slowly along the depth direction.

![Graphs showing fatigue crack propagation characteristics of crack-II: (a) variation law of SIF amplitude with crack depth; (b) variation law of point-A SIF amplitude with crack depth; and (c) variation law of point-C SIF amplitude with crack depth.](image)

Figure 12: Fatigue crack propagation characteristics of crack-II: (a) the variation law of SIF amplitude with crack depth; (b) variation law of point-A SIF amplitude with crack depth; and (c) variation law of point-C SIF amplitude with crack depth.

Table 1 lists the equivalent stress intensity factor amplitude of the key points of the rear crack of the longitudinal rib medial fillet weld with 6mm, 8mm and 10mm welding feet under the most unfavorable loading conditions. Figure 13 shows the rib-to-deck joint with internal weld. The amplitude of equivalent stress intensity factor of crack key points decreases after internal welding, which proves the effectiveness of steel bridge deck reinforcement. Other factors remain unchanged, and the amplitude of equivalent stress intensity factor decreases
with the increase of welding foot size. When the internal weld foot size is 10 mm, the equivalent stress intensity factor amplitude of the crack focus is 88.3 MPa·mm$^{1/2}$ and 97.6 MPa·mm$^{1/2}$, respectively. Compared with the equivalent stress intensity factor amplitude of the crack focus point before reinforcement, the decrease of Point A is 80.1 %, and the decrease of B point is 67.4 %. The calculation results show that the introduction of internal welding can effectively delay the further propagation of cracks and obtain an ideal crack arrest effect. Figure 14 shows the variation of SIF with weld size. It can be seen from the figure that the weld size of 6 mm can meet the requirements of internal weld reinforcement, and the effect of increasing the welding size is similar.

![Figure 13: Rib-to-deck joint with internal weld. (unit: mm)](image)

Table 1 The SIF of crack before and after internal welding reinforcement

<table>
<thead>
<tr>
<th>Weld size (mm)</th>
<th>Point A ΔK (MPa·mm$^{1/2}$)</th>
<th>Decreasing range (%)</th>
<th>Point B ΔK_{eff} (MPa·mm$^{1/2}$)</th>
<th>Decreasing range (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I</td>
<td>Stage II</td>
<td></td>
<td>Stage I</td>
<td>Stage II</td>
</tr>
<tr>
<td>6</td>
<td>443.5</td>
<td>108.7</td>
<td>75.5</td>
<td>299.3</td>
</tr>
<tr>
<td>8</td>
<td>443.5</td>
<td>94.0</td>
<td>78.8</td>
<td>299.3</td>
</tr>
<tr>
<td>10</td>
<td>443.5</td>
<td>88.3</td>
<td>80.1</td>
<td>299.3</td>
</tr>
</tbody>
</table>

![Figure 14: The SIF of crack.](image)

In order to further simulate the influence of crack length and depth on the reinforcement effect of internal welding, four crack sizes were selected for the model. According to the crack size, the numerical model of internal weld reinforcement is established, and the crack stress intensity factor is calculated. In order to compare the reinforcement effect of different crack sizes by internal weld, the crack size corresponding to different crack depths is selected. The calculation results are shown in Table 2.

The results show that: (1) The SIF amplitude at the crack tip of Crack-II can be effectively
reduced by using internal-weld reinforcement method. The main reason is that the existing cracks become internal defects by applying fillet welds inside the longitudinal ribs, and the local stress characteristics are changed to reduce the SIF amplitude. (2) When different crack sizes are reinforced, the amplitude reduction of SIF at crack tip is basically the same, indicating that when the reinforcement method of structural details is determined, the reinforcement effect of crack size within a certain range is basically determined, but whether the existing cracks continue to expand is closely related to the size of external load.

<table>
<thead>
<tr>
<th>Crack size (mm)</th>
<th>Load stage</th>
<th>SIF ΔK (MPa·mm^{1/2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>c</td>
<td>Stage I</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>325.4</td>
</tr>
<tr>
<td>4</td>
<td>8.5</td>
<td>383.4</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>406.9</td>
</tr>
<tr>
<td>8</td>
<td>23.5</td>
<td>416.3</td>
</tr>
</tbody>
</table>

3.3 Fatigue life

Structural stress method [31] decomposes the highly nonlinear stress existing in weld toe section under external load into membrane stress σ_m, bending stress σ_b and nonlinear peak stress σ_{nl} generated by local notch effect. The resultant force of membrane stress σ_m contributed by in-plane tensile effect and bending stress σ_b contributed by out-plane bending effect is structural stress σ_s. Structural stress σ_s can be integrated by finite element method according to the following equation:

$$
\sigma_s = \sigma_m + \sigma_b = \frac{f_x}{t} + \frac{6m_z}{t^2}
$$

(1)

Considering the thickness effect and loading mode effect, the equivalent structural stress amplitude ΔS_s is

$$
I(r)^{1/m} = 0.0011r^6 + 0.0767r^5 - 0.0988r^4 + 0.0946r^3 + 0.022r^2 + 0.014r + 1.2223
$$

(2)

$$
\Delta S_s = \frac{\Delta \sigma_s}{I^{(2-m)/2m}I(r)^{-1/m}}
$$

(3)

$$
 r = \frac{\Delta \sigma_s}{\Delta \sigma_m} = \frac{\Delta \sigma_s}{\Delta \sigma_m + \Delta \sigma_b}
$$

(4)

Where t is plate thickness; f_x is the linear force along x axis; m_z is the linear bending moment around z axis; $I(r)$ is the dimensionless constant of load bending ratio r; crack propagation index m is 3.6 [31].
The principal S-N curve equation of fatigue life is solved by equivalent structural stress amplitude:

$$N = \left(\frac{\Delta S}{C_d} \right)^{-1/h} \quad (5)$$

In the equation, N is fatigue life; C_d and h are test constants.

The damage D_i of each crack propagation step subjected to Δn_i cycles under the load amplitude $\Delta \sigma_i$ is calculated, where ΔN_i needs to be calculated by the main S-N curve equation according to $\Delta \sigma_i$; The fatigue cumulative damage D in the process of crack propagation is obtained by linear accumulation of damage degree D_i according to Eq. (6) and (7).

$$D_i = \frac{\Delta n_i}{\Delta N_i} \quad (6)$$

$$D = \sum_{i=1}^{k} D_i = \sum_{i=1}^{k} \frac{\Delta n_i}{\Delta N_i} (i = 1, 2, \ldots, k) \quad (7)$$

The fatigue cumulative damage of crack-II before and after strengthening is calculated according to Eq. (7); The calculation results are shown in Figure 15. After strengthening of internal weld, the cumulative rate of fatigue damage in stage II is significantly lower than that in stage I. It is necessary to further research for different reinforcement timing and crack size. The fatigue crack reinforcement design of steel bridge deck will change the propagation characteristics of existing fatigue cracks and the stress state of key structural details, thus directly affecting the fatigue life of the reinforcement system. Therefore, the fatigue crack reinforcement design of steel bridge deck should be carried out around the fatigue life of the reinforcement system.

![Figure 15: Fatigue cumulative damage.](image-url)

4 CONCLUSIONS

In this paper, it is taken as the research object that the weld details between longitudinal rib and deck of OSD, and the crack propagation characteristics of crack mode Crack-II are analyzed. The stress intensity factor at the crack tip of the welding details for rib-to-deck joints after strengthen is calculated, and the weld-root crack mode and the strengthening effect are evaluated. The main conclusions are as follows:

(1) The three-dimensional numerical simulation of the crack propagation process of the weld root on rib-to-deck joints was carried out by using the finite element software. Under
fatigue failure mode, the crack propagation from initial defect to critical crack size is dominated by type I crack. The shape of crack becomes flatter with the increase of crack depth.

(2) In the strengthening method of internal weld, when the size of the welding foot is 10 mm, the stress intensity factors at the crack focus points A and B decrease the most. After internal weld, the strain of each key measuring point is basically restored to the initial stress state of stage I. This method has obvious repair effect on the local stiffness of the structural details.

REFERENCES

[22] Li M. *Fatigue Evaluation of Rib-to-Deck Joint in Orthotropic Steel Bridge Decks*. Kyoto: Kyoto University, 2014.

These proceedings contain the papers at the TENTH INTERNATIONAL CONFERENCE ON ADVANCES IN STEEL STRUCTURES (ICASS 2020) held in Chengdu, China, from 21 to 23 August 2022. The international conference series on Advances in Steel Structures was initiated in 1996 under the support of The Hong Kong Polytechnic University, which remains very active in fostering its continuation - joined a few years later by the Hong Kong Institute of Steel Construction.

These proceedings bring together most recent findings in numerical, theoretical and experimental research, as well as its practical implementation in design practice in the areas of Assembled Structure, Bridge, Structure Systems, Composite, Connections, Design & Analysis, Direct Analysis, New Material, Fatigue, Cold-formed Steel, Intelligent Construction, Seismic Resistance, Green Construction, Corrosion, Fracture, Collapse, Fire, High-Strength Steel, Stability, Stainless Steel, Testing & Monitoring, Impact and Protection. The papers presented in these proceedings come from a wide range of countries/regions and will be a great reference source.

Volume I:
- Keynotes Lectures
- Assembled Structure
- Bridge
- Cold-Formed
- Composite
- Connections
- Corrosion, Fracture & Collapse
- Design & Analysis
- Direct Analysis
- Fatigue

Volume II:
- Fire
- High-Strength Steel
- Impact and Protection
- Intelligent Construction
- New Materials
- Seismic Resistance
- Stability
- Stainless Steel
- Structure Systems
- Testing & Monitoring